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Artificial intelligence (hereafter AI) is on the mandate of almost
every organization today, transforming productivity and redefining
the boundaries of work (Singla et al., 2025). Almost 60% of jobs
in advanced economies are expected to be impacted by AI (IMF,
2024) - yet the sentiment towards how workers and their tasks will
be affected remains ambiguous. This paper aims to assess how
AI shapes the skill premium through analysis of changes in wage
inequality as measured by the Theil Index. Our regression results
reveal that the scale and complexity of AI models (measured by AI
model parameter counts) exacerbate wage gaps, especially among
low-skilled workers, but AI research and development (using AI
patent filings for proxy) show no significant short-term effect on
inequality. This suggests that technological advances alone do not
immediately translate into labor market disparities, but the com-
plexity of models and the problems they are able to solve may dis-
proportionately disadvantage lower-skilled workers. Following an
analysis of conservative, baseline, and optimistic projections of AI
parameter growth over 5 years, we anticipate that wage inequality
is likely to continue harming low-skilled workers more than their
high-skilled counterparts even in the future. Employment growth
also has significant implications on disparities between occupations,
likely due to skill-biased demand. Keywords: AI, Wage Inequal-
ity, Skill Premium, United States, Occupations, Bureau of Labor
Statistics

Artificial intelligence (hereafter AI) is on the mandate of almost every orga-
nization today, transforming productivity and redefining the boundaries of work
(Singla et al., 2025). Almost 60% of jobs in advanced economies are expected
to be impacted by AI (IMF, 2024) - yet the sentiment towards how workers and
their tasks will be affected remains ambiguous. Although some experts anticipate
that AI will completely take over jobs, others assert that it will be a complement
to workers more than a substitute, increasing productivity (Rosalsky, 2025). In a
market economy where earnings are largely tied to productivity and skill (Autor,
2022), the uncertainty of the impact of AI on these factors translates to an un-
certainty of income distribution among workers. It is this possible distributional
heterogeneity that we aim to examine.
Our study focuses on the United States, justified by three factors as follows.
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Firstly, the US has been at the forefront of AI development for several years.
The US had started rigorous research on AI more than a decade before China
did (Lee, 2018). Between 2013 and 2023, American AI-related grants increased
by almost 40% annually (Stanford HAI, n.d.). As a result, 47% of US jobs may
get replaced by AI within the next decade (Frey and Osborne (2023), as cited in
Lee (2018)). Such evidence proves the relevance and direct impact of AI on the
job market in the US. With the abundance of data and empirical results, the US
is an ideal country for this study.
Secondly, given the direct influence of AI in the workplace, the US has enacted

several relevant policies to minimize its negative spillovers. In 2024, the US
Department of Labor (DOL) introduced an AI Best Practices Roadmap to ensure
that the adoption of AI is well maximized and inclusive for all workers affected
by AI use (Department of Labor, n.d.b). They realized that the opportunities
presented by AI were not equally reaped by all workers. This guideline was then
expected to uplift workers’ rights, employment stability, and workers standard.
The release of these approaches has shown growing concerns from policymakers on
controlling the effect of AI. Our paper then hopes to be an aid to policymakers,
be it in the US or anywhere else in the world, to reinforce the importance of
formulating policies relevant to development of AI.
Thirdly, wage inequality analysis is heavily dependent on the availability of

the country’s labor data. In this regard, the US provides publicly accessible
data on wages and employment. Specifically, the US Bureau of Labor Statistics
(BLS) releases annual datasets on the average income and employment level of job
occupations. This allows us to explore the effect of AI on specific wage inequality
based on their skill levels, according to the International Labour Organization
(ILO)’s standards.
In terms of time range, we utilize data from 2020 to 2024 for our main regression

analysis. Our research looks at the percentage change of the variables for which
we retrieve data from 2019 to 2024. For this particular scope, our rationale lies
on two main factors.
Firstly, the most relevant AI only became more evident during this period. This

is accelerated by the strong urgency from the COVID-19 pandemic for corpora-
tions to implement digital solutions. Based on a survey conducted by Balakrish-
nan et al. (2020), one-fifth of its respondents reported that AI contributes to at
least 5% of their bottom-line.
Secondly, current labor wage datasets are reported using the 2018 Standard

Occupation Classification (SOC) from the Bureau of Labor Statistics, valid for
data between 2018 and 2024 (Bureau of Labor Statistics, 2025). For simplicity,
we chose to maintain this standard and avoid using data from previous years,
which follow older classifications. Therefore, we focus on collecting data from
2019 and thoroughly analyzing them in the 2020-2024 scope.
Given this context, this report aims to assess how AI development in the US

shapes skill premium through analysis of changes in wage inequality, measured
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through a modified Theil index, over time.
We utilize the Theil index primarily for its subgroup decomposability. The in-

dex allows us to isolate how much inequality stems from disparities between skill
levels versus within them, in turn providing more light to AI’s skill-biased effects
(Georgieff, 2024). This separability allows us to single out each group’s contri-
bution to total inequality as well. The calculation also ensures the robustness of
our model, mitigating the ambiguity of the conventional Gini coefficient (World
Bank, n.d.).
We proxy AI development via two distinct channels: AI model parameters and

AI patents. In simple terms, AI parameters account for the quality of AI perfor-
mance (TEDAI San Francisco, n.d.), while AI patents account for the quantity
of AI research and development. The performance of AI models depends on
scale, determined by the number of model parameters, the computational cost of
training, and the size of the dataset (Kaplan et al., 2020). For example, models
like GPT-4 are estimated to include 1.8 trillion parameters, trained on 13 tril-
lion tokens, with a compute cost of $65 million (Li, 2020; Brown et al., 2020;
Patel and Wong, 2023, as cited in Brynjolfsson, Li and Raymond (2025)). For
the purpose of our research, we isolate AI parameters as a measure of the scale
of the AI model, effectively acting as a translation of the computing capabilities
of the model, which is likely to enhance high-skill work (Our World in Data,
2025). This metric was used partially due to the availability of the largest public
dataset of its kind through Epoch AI (2025), and the ‘easily estimable numbers
from descriptions of model architecture’ (Sevilla, Villalobos and Cerón, 2021).
The second proxy of AI development is AI patent filings, reflecting R&D activity
and proprietary innovation. Maher and Schaffelke (2023) state that patents are
widely considered early indicators of innovation, and the main forces of economic
growth and development. Given that businesses are increasingly investing more
into AI development (Brynjolfsson, Li and Raymond, 2025), it was a clear metric
to use in our analysis.
Utilizing data from the BLS and associated crosswalks from the ILO (2025),

we categorize occupations into their skill level - low, middle, and high-skill -
and assess their associated changes in income. In addition, we also utilize fea-
ture engineering to handle ambiguous or missing data. Other control variables,
including Gross Domestic Product (GDP) and Personal Consumption Expendi-
tures (PCE), as well as employment, are utilized to prevent omitted variable bias.
These variables are then added to our fixed effects regression model, which iso-
lates the effect of AI while controlling for skill levels, macroeconomic trends, and
occupation-specific heterogeneity.
Our regression results show that the deployment of AI through model parame-

ters exacerbates wage gaps. Holding other variables constant, a 100,000 percent-
age point increase in AI parameters leads to a 0.12 percentage point increase in
the Theil Index on average, significant at the 1% level. The complexity of AI
models is likely an aid in higher-level thinking tasks, most commonly done by
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high-skilled workers. In contrast, we find that AI patents have little effect on
inequality, likely because of the delayed effect of AI patents being deployed by
businesses. It is possible that the patents themselves take time to have an effect
on businesses as a result. Further results from our regression also suggest that
employment growth has significant implications for the disparities between occu-
pations. This is likely due to skill-biased demand, as the skill premium increases
demand for high-skilled workers. Changes in employment levels had a positive
and statistically significant impact on wage inequality - an increase in employ-
ment changes by 100,000 percentage point is associated with an increase of the
Theil Index by 183.724 percentage point on average.
As an extension of our analysis, we extrapolate the performance of AI (through

predicted increases of AI parameter count) to provide 1, 2, and 5-year projections
of AI’s impact on wage inequality within skill levels, and then between skill levels.
We utilize linear, quadratic, and exponential growth potentials of AI parameter
counts to correspond to conservative, baseline, and optimistic projections respec-
tively. We find that the conservative growth of AI complexity will lead to 3.42%
less inequality growth within high-skilled occupations compared to low-skilled oc-
cupations in the next five years. In the optimistic expectation that AI models
become more complex and increase in the number of parameters, wage inequality
growth will increase by almost three times in the span of five years.
Our results are reflective of previous literature surrounding this topic, which

has mostly centered on the implications of computerization and automation via
robots, or utilizes specific language models in individual case studies. Theoret-
ically, we identify two main frameworks to explain wage disparities caused by
technology - Skill-biased Technological Change (SBTC), and the task polariza-
tion model. SBTC explains that wage disparities are a consequence of high-skilled
workers being able to benefit substantially from technological change compared to
their low-skilled counterparts. On the other hand, the task polarization model sin-
gles out specific low-skill, routine tasks that can be automated and consequently
replace low-skilled workers. Regardless of the framework used, both theories im-
ply that technological change creates an inevitable wage disparity between low-
and high-skilled labor.
In comparison, some case-specific research shows mixed results. A study by

Brynjolfsson, Li and Raymond (2025) showed that low-skilled workers were able
to learn from AI’s recommendations, where the model is trained in best practices,
creating a 14% increase in productivity on average. Other research showed no
treatment effect of access to AI on average (Otis et al., 2024).
Other research on AI and its effect on skill premium has also been done by

Bloom et al. (2024), who explore wage disparity through a production function,
showing that AI reduces skill premium.
However, this research paper, to our knowledge, is the first of its kind to analyze

the implications of AI based on income data and the Theil Index on a macroeco-
nomic scale. We make use of specific data sets from the Bureau of Labor Statistics
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in pursuit of visible results within the economy.
Our paper is organized as follows. Section 1 will outline our data handling

methodology alongside our proposed regression model. Following the testing of
our hypothesis, Section 2 will discuss our results from our main regression, out-
lining any variables that were statistically significant in the discussion of AI on
changes in wage inequality. We extend this discussion with results from extrap-
olation of AI parameter data, allowing us to project future implications on wage
inequality. This will be followed by corroborating evidence and relevant literature
in Section 3. Finally, in Section 4, we discuss extensions and possible topics for
future research, followed by our concluding remarks in Section 5.

I. Data Handling and Methodology

A. Data Sources

I.A.1 Income per Occupation

The US Bureau of Labor Statistics (hereafter, BLS) lists out employment num-
bers, as well as average and median hourly wage, for approximately 850 occupa-
tions each year (Bureau of Labor Statistics, 2025). These occupations are cate-
gorized based on the 2018 Standard Occupational Classification (SOC) system,
a federal statistical standard by the BLS. Each of the 850 or so occupations is
classified as ‘detailed’ and each detailed occupation is placed in one of 459 broad
occupations. The occupations are then further subdivided to 98 minor groups,
and 23 major groups to facilitate classification (Bureau of Labor Statistics, 2025).
These groupings are based on similar job duties, skills, education, and/or training
per detailed occupation.
The number of occupations provided each year had some variation, as some

occupations were added or removed by the BLS. To ensure consistency in the
time panel data, we considered 2024 detailed occupations as the baseline for our
research. For detailed occupations that did not exist in the 2024 detailed oc-
cupation list, associated occupations from previous years were removed. Those
included: ‘Dancers’, ‘Actors’, ‘Musicians and Singers’, ‘Disc Jockeys, Except Ra-
dio’, ‘Entertainers and Performers, Sports and Related Workers, All Other’.
For missing data entries in income, the Little’s MCAR test was first conducted

to justify the use of an imputation method and a Multivariate Normal test to
ensure the validity of normal distributional assumptions. Failure to reject the
null hypothesis of the MCAR test justified the use of the Multiple Imputation
by Chained Equations - Predictive Mean Matching (MICE-PMM) algorithm to
impute any missing values to create a complete dataset (see A.A1 for detailed
MICE imputation process). In simple terms, the MICE-PMM algorithm allowed
us to predict missing income in a detailed occupation utilizing data from previous
years. With an imputed and completed dataset, the annual percentage changes
of income per occupation were calculated.
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I.A.2 Employment per Occupation

Employment numbers per occupation are also provided by the BLS (2025) for
the years 2019 to 2024, and were used as a control factor to account for any labor
demand shifts. This allowed us to isolate AI’s direct effect on wages as opposed
to its effects on job creation or replacement.
The data were handled in a similar way to income data (Section 2.1.1), where we

used 2024 as the baseline year and the MICE-PMM algorithm to impute missing
values. We calculated annual percentage changes to employment numbers per
occupation and combined these data with their associated income changes.

I.A.3 Skill Level Classification

SOC 2010 and ISCO-08 Crosswalk
Each detailed occupation provided by the US BLS is classified by a Standard

Occupational Classification System (SOC or OCC Code), which is renewed pe-
riodically. The detailed occupations we utilized were classified by the SOC 2018
standard. For skill classifications, SOC occupations can be mapped to the Inter-
national Labor Organisation’s Standard Classification of Occupations (ISCO-08
Codes) (2024), which in turn have Skill Classifications from Level 1 (Low) to
Level 4 (Very High).
We found that crosswalks of ISCO-08 and 2010 SOC codes are provided directly

by the BLS, but crosswalks to ISCO-08 and 2018 SOC codes were unavailable. A
sample of the crosswalk is provided in Table 1 below:

ISCO-08 Code ISCO-08 Title Skill Level (1-4) 2010 SOC Code 2010 SOC Title
1111 Legislators 3 and 4 11-1031 Legislators
1112 Senior government officials 3 and 4 11-1011 Chief Executives
1112 Senior government officials 3 and 4 11-1021 General and Operations Managers
1112 Senior government officials 3 and 4 11-9161 Emergency Management Directors

Table 1—ISCO-08 and 2010 SOC Crosswalk

To match the 2018 SOC codes with ISCO-08 Occupation Classifications and
their associated skill levels, we used 2010 SOC crosswalks between the two datasets,
as shown in Figure 1. In simple terms, we mapped ISCO-08 skill levels to 2010
SOC codes and then 2010 SOC to 2018 SOC.

Figure 1. Visualization of mapping ISCO-08 Skill level to SOC 2018 Classification
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Skill level re-classification
The ISCO-08 Skill Classifications range from 1 to 4 (see A1). To simplify

our analysis, we merged Level 3 and 4 classifications to one single ‘High’ skill
classification, creating 3 major classifications - Low (Level 1), Medium (Level 2),
and High (Level 3&4).

Handling corner cases with RoBERTa
Handling corner cases not directly concluded in the previous indirect crosswalk

mapping proved challenging, however, as there were instances of many-to-many
mapping. This resulted in multiple rows for an occupation title, but with different
skill levels. We extracted a table out of the crosswalk datasets as an illustration
below:

2010 SOC Title ISCO-08 Title ISCO Skill Level Classification

Gaming Surveillance Officers and Gaming Investigators Legal and Related Associate Professionals High (2)
Security Guards Medium (1)

Table 2—SOC Title and ISCO Classification

We used an SVM classifier on RoBERTa word embeddings, imputed with
ADASYN, as a tool to perform a tiebreaker for skill level categorization.
These embeddings were trained on the ISCO-08 skill categorization data set,

with a standard 80-20 train-test split. We then evaluated the performance of
SVM with standard classification metrics and checked for linear separability of
the predictions with PCA (see A.A3).
Skill levels are categorized in an ordinal scale of 0 (low-skilled), 1 (medium-

skilled), and 2 (high-skilled). We gathered all 44 occupations with multiple skill
level classifications post-merge (see A3 & A4). Afterwards, a tiebreaker function
handled the following three cases.

1) If the SVM classification is within the range of skill-levels determined by the
crosswalk, then the final tiebreaker result is indeed the SVM classification.

2) If the SVM classification is greater than the maximum of the range of skill-
levels determined by the crosswalk, then the final tiebreaker result is the
maximum of the set of skill-levels.

3) If the SVM classification is less than the minimum of the range of skill-levels
determined by the crosswalk, then the final tiebreaker result is the minimum
of the set of skill-levels.

When we run this through the above title, for example, ’Gambling and Surveil-
lance Officers and Gambling Investigators’ (2018 SOC Title) is classified as Low
Skill (0). According to the criteria set above, this job title is then classified as
low-skilled in our model.
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In addition, there were five occupations that were completely lost during the
income-employment and ISCO-OCC-2018 merge (see A5). For these five entries,
we directly used the SVM classifier’s predicted skill levels.
The aforementioned process allowed us to create a one-to-one link from each

available occupation to a single skill level. Our final data set is our detailed occu-
pation data, associated skill levels, along with percentage change of employment
and income per occupation.

Figure 2. Visualization of mapping OCC Codes to ISCO Codes for Skill Level Assignment

I.A.4 GDP & PCE Growth

Annual Gross Domestic Product (GDP) and Personal Consumption Expendi-
ture (PCE) growth are sourced from the Federal Reserve Bank of St. Louis (2025),
and are used to control for any economic cycle implications on wage inequality,
which is likely owing to the overlap between the time period under consideration
and US economic recessions during the COVID-19 pandemic. Both variables are
lagged by a year to address temporal dynamics and improve causal inference.

I.A.5 AI Parameters

AI parameter data are included as a measure of AI development and capabilities
of AI systems, which in turn may shape how jobs are affected in the US. AI
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parameters represent developments in model size, computational power, and the
complexity of training methodologies (Epoch AI, 2024). These parameters act as
a proxy of how capable an AI model is in handling a wider range of complex tasks
- a higher parameter count of an AI model means that the number of occupations
and tasks that can be impacted by AI increases (Our World in Data, 2025).
These data are frequently updated, depending on the development of AI models,
by Epoch AI.
For the purpose of our regression, we calculated the average number of param-

eters (which can range from million to trillion units) produced each year. If there
are missing values of AI parameter for certain AI models, they were excluded out
of our analysis. We chose to take an average to avoid overexposure to outliers,
providing us with the central tendency of AI adoption intensity across the labor
market. This would effectively allow us to capture the ‘typical’ worker’s exposure
to AI while ensuring comparability across years. To capture marginal produc-
tivity effects, we take the annual percentage change of parameter models for the
periods under consideration.

I.A.6 AI Patents

AI Patent data are used as a proxy of AI innovation. We assume that higher
numbers of AI patents granted translate to higher levels of innovation within
the industry, with implications on all jobs. For AI Patent data, we used The
Lens (lens.org), a flagship project of Cambia, an independent non-profit social
enterprise based in Australia. This project ‘seeks to source, merge and link diverse
open knowledge sets, including scholarly works and patents’ (Lens, 2025). Lens
collaborates with renowned organisations like US Patent and Trademark Office
(USPTO) and Microsoft Academic as their sources of data points.
Data were filtered out to only provide patent information from the US specif-

ically related to AI and NLP models from any given industry, based on CPC
classification codes (see A6). For AI patents, a T-1 lag was used to account for
the delayed effect of the business adoption after AI patent releases.

B. Data Omitted

Given the context of the US, minimum wage and educational attainment per
occupation were considered in our hypothesis.
Minimum wage may have some implications on the starting wage and therefore

the level of wage inequality per skill level. However, we found that US minimum
wage policy remained unchanged throughout the time period under consideration
(Department of Labor, n.d.a). Further research also found only a very small
percentage of individuals earning less than the required minimum wage in their
occupations (US Bureau of Labor Statistics, 2023). Given these two reasons,
minimum wage was omitted from the scope of the regression.
In addition, education levels and education requirement levels per occupation

were considered. This is because improvements in education attained by the
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labor market may have an impact on wage inequality (Kim, 2022). However, we
found that there were little to no changes in education levels or requirement per
occupation over the years. Besides, our model measures the percentage change
of the variables. This variable was almost zero in our regression. It was also
therefore removed.

C. Methodology

To calculate wage inequality, we utilize the Theil index, which measures changes
in ‘entropic distance from the “ideal” egalitarian state of everyone having the same
income’ (US Census Bureau, 2021).
We aim to look for how AI impacted changes in wage inequality between skill

levels. To calculate this, we use a modified Theil Index as shown below:

(1) Inequality_componenti,t =
1000

N
×
(
wi,t

µt
× sgn

(
wi,t

µt

)
× ln

(∣∣∣∣wi,t

µt

∣∣∣∣+ 1

))
Where Inequality_componenti, t is inequality level for group i (e.g.skill levels) at
time t. N is the number of skill levels. wi,t is wage growth in percentage terms for
each skill level at time t. µt is the mean percentage wage growth across all skill
groups at time t. 1000/N is a per-capita scaling factor, which normalizes results
for comparability across datasets. The log transformation downweights extreme
values, while remaining sensitive to changes across the entire distribution. A
higher outcome in the Inequality_componenti, t would indicate a higher level of
income inequality.
Given this modified Theil Index, we hypothesize that the increase in AI will

have an effect on wage inequality between skill groups. We propose a regression
model as follows:

Inequality_componenti,t = β0 + β1AIparametersi,t + β2AIpatentsi,t

+ β3skill_mediumi + β4skill_highi
+ β5(AIparameters× skill_mediumi)

+ β6(AIparameters× skill_highi)

+ β7Employment_changei,t

+ β8GDP_Growtht−1 + β9PCE_Growtht−1

+ αi + εi,t

In order to assess the change in AI development and wage inequality, we model
all variables as the percentage change between a given year Y1 and the previous
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year Y0 as seen below:

Z =
∆Y

Y0
=

Y1 − Y0
Y0

=
Y1
Y0

− 1

Our core specification is estimated using pooled Ordinary Least Squares (OLS),
followed by fixed effects models to control for unobserved heterogeneity. Specif-
ically, we include year-fixed effects to absorb time-specific shocks that affect all
occupations uniformly, and occupation fixed effects to account for time-invariant
characteristics unique to each occupation. A two-way fixed effects model, incorpo-
rating both year and occupation fixed effects, serves as our most comprehensive
specification. To address within-group autocorrelation and heteroskedasticity,
standard errors are consistently clustered at the occupation level across all esti-
mations.
Furthermore, we introduce the interaction term of AI Parameters and skill levels

to assess the heterogeneity of AI’s impact in different skill levels, from Low (0,
as reference group), Medium (1), and High (2). These terms help to assess if AI
development disproportionately affects the labor market, favoring a specific skill
level more than the other. Companies decide on the AI models they use based
on the AI parameters of the given AI model, ensuring they stay relevant with
AI development (Samborska, 2025). In relation to this paper, AI development
as measured by AI parameters would positively affect high-skilled laborers and
negatively affect low-skilled ones (Ma et al., 2022).
Finally, we combine the left-hand side of the equation (between-group wage

inequality measured by the Theil Index) and key explanatory variables (AI Pa-
rameters and AI Patents), supplemented with some control factors. These ex-
planatory variables are represented by (β1) and (β2)respectively. We also use
interaction term between AI Parameters and Skill Level (β3). Aside from these
main variables, we also include changes in employment, GDP growth, and per-
sonal consumption expenditures as our control factors. This equation is expected
to estimate how improvements in AI restructures wage inequality across different
skill levels.

II. Regression Analysis and Interpretations

The results were statistically significant for the AI parameters coefficient (p-
value< 0.01). Employment change over the years (p-value< 0.05) was also an-
other primary factor in our prediction. Pearson’s correlation coefficient increased
to 0.297 in the occupation fixed-effects model relative to the baseline pooled OLS.
This means that the model decreases mean-squared error by 29.7% relative to a
sample mean estimate and explains 29.7% of the variability in the model.
Using percentage change of Theil index as a dependent variable, we use four

model specifications: pooled OLS, year fixed effects, occupation fixed effects, and
two-way fixed effects (combined year and occupation fixed effects). Given that
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the change of Theil index over the years is very marginal, the coefficient started
very small. Hence, we scale the model by a factor of 105 for easier interpretation.
This means that for any 100,000-percent change in the independent variables, the
income inequality will increase by the respective coefficients shown above.
The analysis for the effect of AI parameters is broken down into three skill

classifications - low, medium, and high skill. The coefficient for low-, medium-,
and high-skilled jobs is indicated in the variables AI Parameters, AI Parameters
x Medium Skill, and AI Parameters x High Skill respectively. Consistent with our
previous assumption, the coefficient on AI parameters is positive and statistically
significant at the 1% level. A 100,000 percentage point increase in the percent-
age change of AI parameters increases the income inequality by 0.12 percentage
points, for low-skilled workers on average, holding other variables constant. This
effect is also apparent in the occupational fixed effect, with the same significance
level. Meanwhile, the coefficients of the interaction terms are not statistically
significant. Even so, they show contrasting results to that in low-skilled roles.
AI parameters seem to promote wage inequality. In the dummy variables, wage
inequality is associated positively in medium-skilled occupations and negatively
in high-skilled occupations. This might suggest that the effect of AI parameters
on wage inequality is most prominent across low-skilled workers.
For AI patents, we use lagged terms to account for the temporal gap between

patent approval and its observable impacts in the workforce. Although the coef-
ficient on AI patents is statistically insignificant, it is negatively linked to wage
inequality in both pooled OLS and occupation-fixed effects. This can also poten-
tially imply that AI patents do not directly affect wage inequality in the short
run.
Among macroeconomic control variables, changes in employment levels have

a statistically significant and positive impact on wage inequality. A percentage
point increase in employment change by 100,000 tends to be associated with
an increase in the Theil index by 183.724 percentage points. Interestingly, GDP
growth and PCE growth are both statistically insignificant in this equation across
all the model specifications.
Regarding model fit, incorporating occupation fixed effects greatly enhances

the explanatory power of the model, which is shown by the increase of R2 by
28.5% from 1.2%. This highlights the importance of controlling for structural
occupation differences, irrelevant with the development of AI. On the other hand,
time-specific shocks, accounted for by year fixed effects, do not change the fitness
of the model.
In Table 3, we observe several missing coefficients that are dropped out of the

model. This happens because some variables are almost perfectly collinear with
others. These pairs include AI Parameters-AI Patents, Medium Skill-High Skill,
and GDP Growth-PCE Growth.
Additionally, we assessed the cross-correlation between our estimates and cre-

ated diagnostic plots for our linear model (see Figure 4). The residuals versus
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fitted plot has a neither convex nor concave line, indicating a linear relationship.
The normal Q-Q plot suggests that the residuals primarily follow a normal distri-
bution. The scale-location plot shows a relatively straight horizontal line with a
high concentration of points on the middle and the left, which indicates that our
model is resilient towards heteroskedasticity, which is consistent with the results
of the Breusch-Pagan test (p-value> 0.05). Finally, the residuals versus leverage
plot shows that there are no influential observations on the fitted results, as no
observation falls outside the Cook’s distance line.

Table 3: Effects of AI on Wage Growth Inequality Components

Pooled OLS Year FE Occupation FE Two-way FE
AI Parameters 0.120*** - 0.120*** -

(0.039) (0.039)
AI Patents (t-1) −0.029 - −0.031 -

(0.083) (0.083)
Medium Skill 1.135 1.135 - -

(15.350) (15.350)
High Skill −10.462 −10.462 - -

(20.220) (20.220)
AI Parameters ×
Medium Skill

−0.030 −0.030 −0.029 −0.029

(0.034) (0.034) (0.033) (0.025)
AI Parameters ×
High Skill

−0.014 −0.014 −0.013 −0.013

(0.038) (0.038) (0.039) (0.041)
Employment
Change (%)

183.724** 183.724** 177.323* 177.323***

(80.778) (80.778) (92.797) (30.503)
GDP Growth (%,
t-1)

−9.386 - −9.421 -

(12.087) (12.164)
PCE Growth (%,
t-1)

8.303 - 8.375 -

(10.518) (10.664)
Num.Obs. 4095 4095 4095 4095

R2 0.012 0.012 0.297 0.297

R2 Adj. 0.009 0.009 0.120 0.120

* p < 0.1, ** p < 0.05, *** p < 0.01
Growth variables expressed in percentage points.
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Figure 3. Correlation heat map

Figure 4. Further Diagnostics Plots
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III. Extensions/Robustness Checks/Discussion

Our framework utilizes year fixed effects, also incorporated in the two-way fixed
effect, to anticipate time-invariant heterogeneity across occupations and macroe-
conomic shocks common to all occupations in a given year. However, our as-
sumption is that the relationship between AI advancement and wage inequality is
uniform and time-invariant. This might pose a challenge where AI could influence
the job market overtime, but gets ignored because of the year fixed effects.
Moreover, the specification relies on Theil index as our dependent variable,

wage inequality. Despite having chosen Theil index over other alternatives like
Gini coefficient following the claim by World Bank (n.d.), these other metrics
could still be applied to our model to compare the overall explanatory power.
Given these shortcomings, to add further value we aim to further expand our

study to provide further projections of our model. Specifically, we extrapolate the
graph by five years (2025 to 2029) to estimate the effect of AI parameters and AI
patent on income inequality. For the prediction, we split the assumptions on three
scenarios, conservative, baseline, and optimistic. Conservative AI projections are
assumed to have a linear trend. In the baseline segment, the AI growth is assumed
to follow quadratic trend. While for the optimistic segment, the AI growth is
assumed to be exponential. In all scenarios, only the values of AI parameters are
modified according to the presumed growth path, while AI patents are kept linear
as it has no statistically significant effect.

Figure 5. Conservative Forecast

The conservative projection (see Figure 5) extends the graph by assuming the
same growth rate of AI parameters, using the mean of growth in AI parameters
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over the last five years (2020 to 2024). We define linear growth as conservative
given that in the previous five years, the AI growth has not been uniform, yet it
is still a relevant assumption to include linear trend as our conservative model.
In this scenario, high-skilled occupations are expected to have slower growth in
income inequality by 3.42% compared to their low-skilled counterparts in the
following five years.

Figure 6. Baseline Forecast

For baseline modeling in Figure 6, we follow the hypothesis that under non-
extreme conditions, AI development (represented by AI parameter counts) should
continue to grow quadratically. The difference in growth across the three skill-
level classifications is predicted to be not that far apart from each other.
Lastly, under the optimistic scenario as in Figure 7, the growth path extends

exponentially. This causes all three lines to have marginal distance from one
another. At the same time, it means that wage inequality across skill levels
may worsen by roughly 2.91 times in the span of five years. That is, if the AI
development follows the exponential trend, which is evident based on our previous
discussions.
In generating these predictions, we assume a describable trend across the years.

However, this might not be the case. AI growth, either AI parameters or AI
patents, may have volatile growth in certain years. This is evident in the historical
data. AI parameter grew by 355.12% in 2019 but dropped by 41.17% in 2023.
Consequently, our analysis focuses more on the endpoint of the timestamp rather
than specific value on certain years, which might not be exactly realized in the
future.
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Figure 7. Optimistic Forecast

IV. Literature Review

Current literature surrounding this topic aims to theoretically explain the tech-
nological change in wage inequality, or provides the effects of AI on a case-by-
case basis. Skill-Biased Technological Change (SBTC) and the task polarization
model were the dominating theories we identified to be most relevant. The former
explains wage disparities as a result of high-skilled workers being able to ‘dispro-
portionately benefit’ from technological change, owing to the nature of their work
being more abstract-reasoning and communications heavy (Autor, 2022). With
the use of computerization, these tasks are complemented, allowing these high-
skilled workers to be more productive. This causes an increase in the demand for
high-skilled workers, creating a skill premium. In contrast, low-skilled employees
whose tasks are not complemented by technological change either face stagnant
or declining wages.
The task polarization model follows a similar conclusion, but explains wage dis-

parity as a result of task displacement (Autor, 2022). The theory stipulates that a
single job can be broken down into multiple tasks, and routine tasks can be singled
out to be automated. Usually, these routine tasks are done by low-skilled workers -
and as their tasks are automated, they are consequently displaced. Acemoglu and
Restrepo (2022) found that routine-task-intensive jobs faced downward pressure
over ensuing decades since automating tasks. Their results showed that 50%-
70% of wage changes were tied to automation displacing routine-task workers,
implying an adverse impact of technological change on the earnings of less-skilled
workers (Acemoglu and Restrepo, 2022).
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Other research has involved looking at specific use cases, identifying impli-
cations of tailored AI models on workers in a given company. In these cases,
results are mixed. A study by Otis et al. (2024) on generative AI’s impact on en-
trepreneurial performance found that well-performing entrepreneurs were able to
benefit from the use of AI, but less-performing entrepreneurs did not see the same
results. On average, there was no treatment effect of access to the AI model on
firm performance (Otis et al., 2024). This is contrary to another study by Bryn-
jolfsson, Li and Raymond (2025), where customer support agents were provided
with access to an AI tool and saw a 14% increase in productivity on average, with
a disproportionate advantage for novice and low-skilled workers (Brynjolfsson, Li
and Raymond, 2025).
Previous research surrounding the topic of AI on skill premium has also been

done by Bloom et al. (2024), who explore the impact of technology on the skill
premium by proposing a nested constant elasticity of substitution production
function and testing three types of capital against it. This study utilized some
data from the BLS, showing evidence of AI reducing skill premium, but did not
derive specific relationships between AI use and macroeconomic wage data.
To our knowledge, there is no literature to date that analyses the impact of AI

on the change in wage inequality between skill levels on a macroeconomic scale.
Our research provides novelty through the use of BLS occupational data and
their associated income levels, providing realistic analyses of AI’s implications on
actual changes in income in the US.

V. Conclusion

The implications of AI on the future of labor markets and its constituents re-
main uncertain. Our paper provides empirical evidence of AI on wage disparity
over time on a macroeconomic scale. In our case, we aim to look at the implica-
tions of AI parameters and AI patents on a modified Theil Index.
Our results suggest that more complex AI models, measured through the num-

ber of parameters, are able to disproportionately help higher-skilled workers, likely
due to their ability to leverage AI tools for productivity gains. AI patents, in con-
trast, showed no significant short term effect, indicating that innovation may not
immediately translate into labor market disruption - unlike deployment. The
result persists despite our effort to lag the variable by one term. Interactions
between AI and skill groups were insignificant, but the coefficient sign confirms
that AI’s inequality effect is skill-biased, where high-skilled workers capture more
gains, while low-skilled workers face stagnation or displacement.
A variety of directions for future research are available from this research.

Firstly, while our research is solely focused on skill groups, natural follow up
questions would involve AI effects on specific industries. This is mainly because
AI development has inconsistent effects on different occupational sectors (Sep-
tiandri, Constantinides and Quercia, 2024). One alternative that further studies
could consider is to use a more specific set of index systems than AI parameters
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to measure AI development per industry.
Additionally, non-wage dimensions, like job quality, could capture AI’s broader

societal implications. Further research can be done to look at AI implications
in regions outside of the US, such as China, which is set to peak in AI adoption
rates by early 2030 (Goldman Sachs, 2025).
AI is reshaping labor markets, but as our research shows, it is not equal. While

AI adoption boosts productivity, its benefits are concentrated among high-skilled
workers, exacerbating wage inequality - especially when paired with employment
growth in skill-intensive sectors. The capacity of AI may be unknown, but one
thing is certain - for a better, more equitable society, AI should be more accessible
to all workers - regardless of skill or title.
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Appendix

A1. MICE Imputation

There were several concerns regarding missing chunks of data when performing
merges across data tables from 2019-2024. In particular, 3.4% of the overall
income data set were missing. On a finer level, 4.3% of income data and 5.3% of
employment data per occupation title at a detailed level were missing. As OCC
occupation categories became increasingly detailed over time, we performed the
merge based on the latest OCC Codes from 2024. This also explains why the
majority of missing data points are from earlier recorded entries in the data set.

Figure A1. Missing Income Data, Overall

We conducted Little’s test on both data sets, which provides strong evidence
against the Missing Completely At Random (MCAR) assumption (p-value <
0.001). We then examined the validity of these results by performing a multivari-
ate and univariate normality test. The Mardia test showed that the change in
income and the change in employment were not multivariate normal (p-value <
0.001). Furthermore, Anderson-Darling’s test concluded that, in fact, the change
in income and employment for each and every year was not univariate normal
(p-value < 0.001).
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Figure A2. Missing Income Data, Detailed

Despite concerns of violations of the multivariate normality assumption of Lit-
tle’s test, we proceeded to the conclusion that the data are indeed not MCAR.
We can clearly visualize missing patterns that differ across time as the above, and
we know that OCC standards have increased in detail over time. Furthermore,
prior research has shown that Little’s test maintains reasonable Type I error rates
under moderate departures from normality, particularly with larger sample sizes
(Jamshidian and Jalal, 2010).
To further mitigate these concerns, we opt for a more sophisticated method,

such as Multiple Imputation by Chained Equations (MICE) with Predictive Mean
Matching (PMM). MICE-PMM has been shown to effectively handle longitudinal
correlation structures while maintaining robustness to non-normality in the data
distribution. The PMM algorithm, in particular, preserves the distributional
characteristics of the observed data without assuming normality (Van Buuren
and Groothuis-Oudshoorn, 2011; White, Royston and Wood, 2011).
We conducted visual diagnostics for MICE-PMM predictions, assessing the con-

vergence over iterations and a density plot comparing actual values (blue) and
imputed values (red). We used earlier data points to predict missing values in
the subsequent years. Predictions of both income and employment data converge
well. However, density plots for variables over 2018-2019 show that the original
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Figure A3. Missing Employment Data, Detailed

distribution was not preserved. This is reasonable, as this is the first period of
analysis, and missing values are not imputed with reference to any previous years.
Furthermore, there are more missing values relative to later time points. For this
reason, we decided to just use data from 2018-2019 for imputation, and we later
excluded them from our regression analyses.
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Figure A4. MICE-PMM Convergence, Income

Figure A5. MICE-PMM Convergence, Employment

26



Figure A6. Pre and Post Imputation Density Plots, Income

Figure A7. Pre and Post Imputation Density Plots, Employment
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A2. ISCO Crosswalk

In the section below, we provide an example of occupations and their corre-
sponding broad skill level.

Broad skill level ISCO-08

Skill levels 3 and 4
1. Managers
2. Professionals
3. Technicians and associate professionals

Skill level 2

4. Clerical support workers
5. Service and sales workers
6. Skilled agricultural, forestry and fishery workers
7. Craft and related trades workers
8. Plant and machine operators, and assemblers

Skill level 1 9. Elementary occupations
Table A1—Broad Skill Levels and ISCO-08

A3. RoBERTa Tiebreaker

Figure A8. A Simple Example: The Intuitive Effects of ADASYN

Further elaboration on the RoBERTa Tiebreaker can be found below:
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Figure A9. A comparison of ideal, XGBoost, and SVM

Metric Definition Low Skill Medium Skill High Skill Weighted Average
Precision How many

of the
positively
classified are
correct?

95% 90% 87% 91%

Recall How good is
it at detect-
ing the posi-
tive classes?

100% 82% 90% 91%

F1-Score Combined
measure to
gauge both
precision
and recall

97% 86% 88% 91%

Error Rate From all
classes,
positive
and nega-
tive, how
many were
predicted
incorrectly?

9.32% Accuracy 90.68%

Table A2—Model Performance Metrics Across Skill Levels

Occupations Requiring a Tiebreaker

The following outlines the occupations requiring a tiebreaker in skill level de-
termination, along with the concluding result of the tiebreaker.
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OCC Code OCC Title ISCO Skill Level SVM Result Final Label

1 11-1021 General and Opera-
tions Managers

(”2”, ”1”) 2 2

2 11-9021 Construction Man-
agers

(”2”, ”1”) 2 2

3 25-3021 Self-Enrichment
Teachers

(”2”, ”1”) 2 2

4 25-4031 Library Technicians (”2”, ”1”) 2 2
5 27-1012 Craft Artists (”2”, ”1”) 2 2
6 31-9091 Dental Assistants (”2”, ”1”) 2 2
7 31-9096 Veterinary Assistants

and Laboratory Ani-
mal Caretakers

(”2”, ”1”) 2 2

8 31-9099 Healthcare Support
Workers, All Other

(”2”, ”1”) 2 2

9 33-1012 First-Line Supervisors
of Police and Detec-
tives

(”2”, ”1”) 2 2

10 33-1021 First-Line Supervisors
of Firefighting and Pre-
vention Workers

(”2”, ”1”) 2 2

11 33-3051 Police and Sheriff’s Pa-
trol Officers

(”2”, ”1”) 2 2

12 33-9031 Gambling Surveillance
Officers and Investiga-
tors

(”2”, ”1”) 2 2

13 35-1012 First-Line Supervisors
of Food Preparation
and Serving Workers

(”2”, ”1”) 0 1

14 35-2015 Cooks, Short Order (”1”, ”0”) 0 0
15 35-9011 Dining Room and

Cafeteria Attendants
and Bartender Helpers

(”1”, ”0”) 0 0

16 37-2011 Janitors and Cleaners,
Except Maids

(”1”, ”0”) 0 0

17 37-2019 Building Cleaning
Workers, All Other

(”1”, ”0”) 0 0

18 39-1014 First-Line Supervisors
of Entertainment and
Recreation Workers

(”2”, ”1”) 2 2

19 39-1022 First-Line Supervisors
of Personal Service
Workers

(”2”, ”1”) 2 2

20 39-3091 Amusement and Recre-
ation Attendants

(”1”, ”0”) 2 1

21 39-4012 Crematory Operators (”1”, ”0”) 2 1
22 39-9099 Personal Care and

Service Workers, All
Other

(”1”, ”0”) 2 1

Table A3—Occupation Classification Results (Part 1: Rows 1–22)
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OCC Code OCC Title ISCO Skill Level SVM Result Final Label

23 41-1012 First-Line Supervisors
of Non-Retail Sales
Workers

(”2”, ”1”) 1 1

24 41-3041 Travel Agents (”2”, ”1”) 2 2
25 41-9091 Door-to-Door Sales

Workers
(”1”, ”0”) 1 1

26 41-9099 Sales and Related
Workers, All Other

(”2”, ”1”) 1 1

27 43-2099 Communications
Equipment Operators,
All Other

(”2”, ”1”) 2 2

28 43-3031 Bookkeeping, Account-
ing, and Auditing
Clerks

(”2”, ”1”) 2 2

29 43-4061 Eligibility Interview-
ers, Government
Programs

(”2”, ”1”) 2 2

30 43-5021 Couriers and Messen-
gers

(”1”, ”0”) 2 1

31 43-5071 Shipping, Receiving,
and Inventory Clerks

(”2”, ”1”) 1 1

32 45-2011 Agricultural Inspectors (”2”, ”1”) 2 2
33 45-2092 Farmworkers and La-

borers, Crop, Nursery,
and Greenhouse

(”1”, ”0”) 1 1

34 45-2093 Farmworkers, Farm,
Ranch, and Aquacul-
tural Animals

(”1”, ”0”) 1 1

35 45-4011 Forest and Conserva-
tion Workers

(”1”, ”0”) 2 1

36 45-4029 Logging Workers, All
Other

(”1”, ”0”) 0 0

37 47-5099 Extraction Workers,
All Other

(”1”, ”0”) 0 0

38 49-9099 Installation, Main-
tenance, and Repair
Workers, All Other

(”1”, ”0”) 1 1

39 51-4051 Metal-Refining Fur-
nace Operators and
Tenders

(”2”, ”1”) 1 1

40 51-8099 Plant and System Op-
erators, All Other

(”2”, ”1”) 2 2

41 51-9161 Computer Numerically
Controlled Tool Oper-
ators

(”1”, ”0”) 2 1

42 51-9162 CNC Tool Program-
mers

(”2”, ”1”, ”0”) 2 2

43 53-7065 Stockers and Order
Fillers

(”1”, ”0”) 0 0

44 53-7199 Material Moving
Workers, All Other

(”1”, ”0”) 0 0

Table A4—Occupation Classification Results (Part 2: Rows 24–44)
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Occupations Requiring a Direct SVM Classification

OCC Code OCC Title Final Label
21-1018 Substance Abuse, Behavioral Disorder, and Mental Health Coun-

selors
2

25-2052 Special Education Teachers, Kindergarten and Elementary School 2
25-9045 Teaching Assistants, Except Postsecondary 2
51-2028 Electrical, Electronic, and Electromechanical Assemblers, Except

Coil Winders, Tapers, and Finishers
1

53-1047 First-Line Supervisors of Transportation and Material Moving Work-
ers, Except Aircraft Cargo Handling Supervisors

1

Table A5—Occupations Requiring Direct SVM Classification

A4. Cooperative Patent Classification (CPC) Codes used and descriptors

CPC Code Descriptor
G06N 3/02 Neural networks
G06N 3/08 Learning methods
G06N 5/00 Computing arrangements using knowledge-based models
G06N 7/00 Computing arrangements based on specific mathematical models
G06N 99/00 Subject matter not provided for in other groups (catch-all for emerging AI tech)

G06Q 10/063 AI for business process automation—operations research, analysis, or management
G06N 20/00 Machine learning
G06F 40/00 Handling natural language data
G06V 10/00 Arrangements for image or video recognition or understanding
G16H 50/20 ICT specially adapted for medical diagnosis—for computer-aided diagnosis
G05B 13/02 Adaptive control systems (i.e., systems that adjust themselves for optimal

performance)

Table A6—CPC Codes and Descriptors
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